RBreath analysis is not really a technique that is used widely in the medical field yet, so it is considered early-stage work. We have developed a sensor device that detects nitric oxide and VOCs (volatile organic compounds) in breath and can be used to tell you about the onset of an infectious disease.”
In addition to nitric oxide, the device examines two other metabolites that could specifically indicate the presence of a COVID-19 infection even in asymptomatic patients. Exhaling once in the breathalyzer may help with earlier detection of the onset of the disease, as well as with monitoring of the severity of the infection, which could help reduce the risk of worsening of the symptoms and allow timely therapeutic intervention.
Gouma, director of the Advanced Ceramics Research Laboratory and professor in the College of Engineering at Ohio State University, is working with co-investigator Andrew Bowman, associate professor of veterinary preventive medicine. The project was recently awarded a nearly $200,000 National Science Foundation EAGER grant under a program supporting exploratory, early-stage research on untested, but potentially transformative, ideas or approaches.
“Breath analysis is not really a technique that is used widely in the medical field yet, so it is considered early-stage work,” Gouma said. “[We] have a sensor device that detects nitric oxide and VOCs (volatile organic compounds) in breath and can be used to tell you about the onset of an infectious disease.”
In addition to nitric oxide, the device examines two other metabolites that could specifically indicate the presence of a COVID-19 infection even in asymptomatic patients. Exhaling once into the breathalyzer may help with earlier detection of the onset of the disease, as well as with monitoring of the severity of the infection, which could help reduce the risk of worsening of the symptoms and allow timely therapeutic intervention, she said.
The new project builds upon Gouma’s invention of a handheld breath monitor that may provide early detection of flu before symptoms appear prior to her arrival at Ohio State. The COVID-19 breathalyzer involves advances on nanomaterials for detecting specific breath gases at the concentrations of interest for making a diagnosis.
The breathalyzer gives results rapidly (15 seconds response time), it is extremely inexpensive, and it is easy to use so that there is no need for trained personnel to perform the test, Gouma said. The results can be viewed directly on the display or they can be transferred to the physician wirelessly.
“We are working on making these handheld monitors that will be widely distributed, and they’re very inexpensive,”
“The technology evolved from the sensors used for monitoring gases in an automotive exhaust—that’s how we started on breath analysis 20 years ago.”
Gouma said the NSF-funded project would not have been possible without the collaboration with the College of Veterinary Medicine, the College of Medicine and the Wexner Medical Center. She said these connections make Ohio State very appealing for interdisciplinary research between engineering and medicine (nanomedicine).
“That’s one of the advantages of Ohio State. You don’t find many institutions that have the No. 1 vet med school in the world and also a world-class medical school,” she said. “It’s also serendipity, because COVID-19 is a zoonosis, a disease that comes from animals, and the vet med school had years of experience studying coronaviruses and the flu in animals.”
The Wexner Medical Center has been treating COVID-19 patients from the beginning of the pandemic, so it offers unique insights to this project.
Gouma said the collaboration is critical for engineers developing medical diagnostics for humans and animals who need to consult with colleagues with expertise in medicine to ensure that the ideas have merit and to validate their claims through clinical trials.
If the device proves to be accurate, portable and effective, it could be used to screen travelers before they step on a flight or to test students and teachers before they head back into the classroom. It would also be used in Medical Intensive Care Units and in every hospital and doctor’s office as a bedside test. Gouma said the breathalyzer technology may also become the platform to help detect metabolic problems like cancer, Alzheimer’s disease or diabetes, by choosing the appropriate biomarker to sample.
Source: https://mse.osu.edu/news/2020/07/dr.-perena-goumas-breathalyzer-technology-getting-lot-attention-during-covid-1
[mepr-show rules=”18700″ unauth=”message”]
Author: Chris Booker
Publisher: Ohio State News
Date Published: June 5, 2020
Background on flu breathalyzer. – https://www.uta.edu/news/news-releases/2017/01/31/gouma-breath-analyzer-flu
Bio of Dr. Gouma.
https://mse.osu.edu/people/gouma.2
[/mepr-show]
Additional Resources:
• Author Information
• Publisher Information
• Biography of subjects
• Links to related Stories
• Background Research on Technology
• Expert Advisors on Subject.